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5. CFD METHODOLOGY

Airflow and heat transfer within a fluid are governed by the principles of conservation of mass,
momentum, and thermal energy. In order to predict the airflow and temperature, as well as the
distribution of contaminants at any given point in the animal room space, CFD techniques are
used to represent the fundamental laws of physics describing fluid flow and heat transfer.

5.1 Methodology Overview

This section outlines the fundamental aspects of CFD, the equations utilized, and the
methodology adopted with respect to the problem at hand.

5.1.1 What is CFD?

Computational fluid dynamics can be summarized by the following definitions:

Computational

The computational part of CFD means using computers to solve problems in fluid dynamics.
This can be compared to the other main areas of fluid dynamics, such as theoretical and
experimental.

Fluid

When most people hear the term fluid they think of a liquid such as water. In technical
fields, fluid actually means anything that is not a solid, so that both air and water are fluids.
More precisely, any substance that cannot remain at rest under a sliding or shearing stress is
regarded as a fluid.

Dynamics

Dynamics is the study of objects in motion and the forces involved. The field of fluid
mechanics is similar to fluid dynamics, but usually is considered to be the motion through a
fluid of constant density.

CFD is the science of computing the motion of air, water, or any other gas or liquid.
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5.1.2 Overview of CFD

The science of computational fluid dynamics is made up of many different disciplines from the
fields of aeronautics, mathematics, and computer science. A scientist or engineer working in the
CFD field is likely to be concerned with topics such as stability analysis, graphic design, and
aerodynamic optimization. CFD may be structured into two parts: generating or creating a
solution, and analyzing or visualizing the solution. Often the two parts overlap, and a solution is
analyzed while it is in the process of being generated in order to ensure no mistakes have been
made. This is often referred to as validating a CFD simulation.

5.1.3 CFD Solutions

When scientists or engineers try to solve problems using computational fluid dynamics, they
usually have a specific outcome in mind. For instance, an engineer might want to find out the
amount of lift a particular airfoil generates. In order to determine this lift, the engineer must
create a CFD solution, or a simulation, for the space surrounding the airfoil. At every point in
space around the airfoil, called the grid points, enough information must be known about the
state of a fluid particle to determine exactly what direction it would travel and with what
velocity. This information is called flow variables.

5.1.4 Governing Equations of Fluid Dynamics

The governing equations of fluid dynamics represent the conservation of mass, momentum, and
energy for a fluid continuum. The conservation of mass states that mass cannot be created or
destroyed, and the conservation of energy is similar. The conservation of momentum is simply
Newton’s Law of Motion (force = mass x acceleration) that is cast in a form suitable for fluid
dynamics. Because the governing equations are the three conservation laws, they are also referred
to as the conservation law equations. The governing equations receive their name because they
determine the motion of a fluid particle under certain boundary conditions.

The governing equations remain the same, however, the boundary conditions will change for
each problem. For example, the shape of the object may be different, or the speed of the
undisturbed air may change. These changes would be implemented through a different set of
boundary conditions. In general, a boundary condition defines the physical problem at specific
positions. Fundamental boundary conditions include the no-slip condition at the interface
between solid and fluid that leads to the formation of a wall boundary layer. Another is the fixed
mass outlet where it is ensured that a constant mass flow is extracted from the solution domain at
a specified plane.
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The governing equations have actually been known for over 150 years. In the 19th century, two
scientists, Navier and Stokes, described the equations for a viscous, compressible fluid, which
are now known as the Navier-Stokes equations. These equations form a set of differential
equations. The generic form of these relationships follow the advection diffusion equation, 5.1:

( ) ( )∂
∂

ρϕ ρ∇ϕ ϕϕ ϕt
div grad S+ − =Γ (5.1)

transient + advection - diffusion = source

The variable phi (ϕ) represents any of the predicted quantities such as air velocity, temperature,
or concentration at any point in the three-dimensional model. All subsequent terms are identified
in section 5.6. This equation is derived by considering a small, or finite, volume of fluid. The
left- hand side of the equation refers to the change in time of a variable within this volume added
to that advected into it, minus the amount diffused out. This is in turn equal to the amount of the
variable flux (i.e., momentum, mass, thermal energy) that is added or subtracted within the finite
volume. Though deceptively simple, only the emergence of ever faster computers over the past
two decades has made it possible to solve the real world problems governed by this equation.

Despite their relatively old age, the Navier-Stokes equations have never been solved analytically.
The numerical techniques used to solve these coupled mathematical equations are commonly
known as computational fluid dynamics, or CFD. At the present time, CFD is the only means of
generating complete solutions.

The Navier-Stokes equations are a set of partial differential equations that represent the equations
of motion governing a fluid continuum. The set contains five equations, mass conservation, three
components of momentum conservation, and energy conservation. In addition, certain properties
of the fluid being modeled, such as the equation of state, must be specified. The equations
themselves can be classified as nonlinear, and coupled. Nonlinear, for practical purposes, means
that solutions to the equations cannot be added together to get solutions to a different problem
(i.e., solutions cannot be superimposed). Coupled means that each equation in the set of five
depends upon the others; they must all be solved simultaneously. If the fluid can be treated as
incompressible and nonbuoyant, then the conservation of energy equation can be decoupled from
the others and a set of only four equations must be solved simultaneously, with the energy
equation being solved separately, if required.

The majority of fluid dynamics flows are modeled by the Navier-Stokes equations. The
Navier-Stokes equations also describe the behavior of turbulent flows. The many scales of
motion that turbulence contains, especially its microscales, cause the modeling of turbulent
processes to require an extremely large number of grid points. These simulations are performed
today, and fall into the realm of what is termed direct numerical simulations (DNS). The DNS
are currently only able to model a very small region, in the range of one cubic foot, using
supercomputers. Differential equations represent differences, or changes, of quantities. The
changes can be with respect to time or spatial locations. For example, in Newton’s Law of
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Motion (F = ma), the time rate of change of velocity, or acceleration, is equal to the force/unit
mass. If the quantities depend on both time and space, the equations are written to take this into
account and they are known as partial differential equations, or PDE’s. In most general
formulations, the governing equations for physical phenomena are written in terms of rates of
change with respect to time and space, or as partial differential equations.

5.1.5 Flow Variables

The flow variables contain information about the fluid state at a point in space. Enough
information must be maintained in order to specify a valid fluid state; i.e., two thermodynamic
variables, such as pressure and temperature, and one kinematic variable, such as velocity. A
velocity will usually have more than one component, i.e., in three dimensions it will have three
components.

In this research, the variables under consideration are the three components of velocity, pressure,
temperature, concentration, and two variables characterizing turbulent levels: turbulent kinetic
energy and its rate of dissipation.

Over the past 25 years, CFD techniques have been used extensively and successfully in the
mainly high-end sectors, such as the nuclear and the aerospace industries. In its raw and general
form, CFD has always been the forte of fluids experts. The recent concept of tailoring CFD
software, combined with the expertise in heating and ventilation in buildings, has made it
possible to apply these powerful methods to provide fast and accurate results to designers under
severe time and budgetary constraints. In fact, this project would not have been practical without
these new elements in place.

5.1.6 How Does it Work?

In order to generate a CFD solution, two processes must be accomplished, namely;

• geometry definition and grid generation
• numerical simulation

In broad terms, grid generation is the act of specifying the physical configuration to be simulated
and dividing it up into a three-dimensional grid containing a sufficient number of small regions
known as control volume cells so that the Navier-Stokes partial differential equations can be
solved iteratively. Numerical simulation is the process of applying a mathematical model to that
configuration and then computing a solution. These two stages are sequential. The grid
generation is performed before any numerical simulation work can be done.
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5.1.6.1 Grid generation

Grid generation is the process of specifying the position of all of the control volume cells that
will define both the simulation’s physical configuration and the space surrounding it. Grid
generation is one of the more challenging and time-consuming aspects of CFD because it
involves creating a description of the entire configuration that the computer can understand. The
model thus defined must include the relationship with the space surrounding the chosen model as
well as the surfaces and processes contained within it. In both cases the most important factor is
to maintain a suitable number of control volume cells in areas where there will be large or rapid
changes occurring. These changes may be changes in geometry, such as a sharp corner of an
object, or they may be sharp changes occurring in the flow field around the object, such as the
edge of jet issuing from the diffuser. This is called maintaining a suitable grid resolution.
Without a suitable grid resolution, valuable information can be lost in the numerical simulation
process and the resulting solution can be misleading. Determining what exactly constitutes
enough grid resolution is one of the most important jobs a CFD scientist or engineer performs.
While too few control volume cells can lead to useless simulations, too many control volume
cells can lead to computer requirements that cannot be fulfilled. A perfect example of this
situation is trying to run the latest version of Microsoft Word on a 286 chip.

5.1.6.2 Numerical simulation

As with every other aspect of CFD, the numerical simulation process can also be broken into two
steps, as follows:

1) Modeling the Physics

If the user does nothing else, then the boundary surfaces of the solution domain are "zero flow"
(i.e., symmetry surfaces). These have zero mass flow, zero surface friction, and zero heat
transfer. The interior of the domain contains only fluid as defined by properties such as density,
viscosity, and so on. Anything else, such as inflow or outflow, walls, internal objects, or heat
gains or losses must be specified explicitly by the user. These are known as boundary conditions.

The locations of boundary conditions are defined in terms of six spatial coordinates (xS, xE, yS,
yE, zS, zE), in meters, referenced from the origin located on one corner of the solution domain.
In the case of a two-dimensional planar (flat) boundary condition (the shelves) the orientation is
specified and the six coordinates degenerate to five. Additionally, some planar boundary
conditions should only affect the fluid (e.g., an external boundary wall has only one surface
present in the solution domain).

For accurate geometrical representations, the grid lines (surfaces of the control volume cells) can
be forced to align with a boundary condition. If this is not done then the boundary condition will
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“snap” to the nearest grid line in the final model. This type of allowance is often acceptable when
setting up room geometries. The exact location of an item need not be clearly defined.

Below is a list, with brief descriptions, of the boundary conditions relevant to the approach taken
in this study, referred to in the sections of this report.

Rectangular
Obstructions

Rectangular obstructions are three-dimensional, solid,
rectangular objects, with faces aligned with x, y and z.
Friction at all surfaces exposed to fluid is included. There are
a number of possible thermal specifications:
• Fixed uniform heat flux at all surfaces
• Fixed uniform surface temperature
• Solve in solid (to investigate conduction through solid)

External Walls External walls are walls at the edges of the solution domain,
or exceptionally internal walls for which solution is required
only on one side and “external” conditions can be applied on
the other side. Surface friction is evaluated automatically and
there are a number of thermal options:
• Prescribed heat flux
• Prescribed inner wall surface temperature
• Prescribed external temperature with detail of the heat

transfer through the wall
Exhausts Exhausts represent any outflow of air, usually when driven

using mechanical means. The flow rate is specified as:
• Fixed mass flow rate (kg/s)
• Linear pressure drop/flow rate fan characteristic
• External static pressure

Openings Openings are any opening through which fluid can enter or
leave the domain as a result of pressure differences. The
temperature and angle of flow of incoming air can be
specified. It is also possible to represent, for example, a grille
across the opening by setting a pressure drop (see
Resistances).
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Resistances Resistances cover any kind of flow resistance (i.e., pressure
drops) caused by porous items within the flow domain.

Two options are available:

Planar resistances:

These provide for areas where the resistance is thin and can be
applied in one plane. The pressure drop is given by the
expression:

( )DP = f v b1
2

2
ρ

Where
DP Pressure drop
f      loss coefficient
ρ      density
v      velocity of fluid
b      geometrical free area ratio of obstruction

Volume resistances:
These provide for areas where the resistance occupies a
significant thickness in the solution domain and resistance will
occur in more than one direction. The pressure drop is the same
as for a planar resistance, except that it is expressed as pressure
drop per meter and the factor and free area ratio is required for
each coordinate direction.

Loss Coefficient and Free Area Ratio:
The loss coefficient will depend on the actual geometry of the
item causing the pressure drop. This will be obtained from
experiment or empirical relationships in textbooks. Care is
needed as it may be set with respect to an approach velocity or
device velocity. If the latter is chosen there will be an
associated free area ratio so the program can correctly
calculate the pressure drop. The free area ratio is not required
if the setting is based on the approach velocity.
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Sources Planar and volume sources provide regions of defined source
of heat or momentum, or fixed values of velocities,
concentration, and/or temperature. The following options are
available:
• Prescribed source of heat, concentration, and/or

momentum
• Fixed values of velocity, concentration, and/or

temperature
• Linear source of heat, concentration, and/or

momentum given by the expression:
source = coefficient (value – velocity or temperature)

The last option also allows the specification of a pressure drop
that varies linearly with (velocity), rather than (velocity)2 ,
which is defined through planar resistances. A pressure drop
term is seen as a source term in the conservation of
momentum equation (equation 5.3). A linear source of
momentum can be arranged to replicate this term, as follows:
• Source = coefficient(value – velocity)
Considering the x-coordinate direction and setting value
= 0, we obtain:
• Sourcex = -coefficient x × velocity x

Which can be seen to be equivalent to:
• DP = -fx × velocity x

Supplies Supplies are to bring air in from outside, normally,
conditioned air from the main plant. The flow is set using:
• Fixed mass flow rate (kg/s)
• Linear pressure drop/flow rate fan characteristic
The temperature and angle of flow of incoming air can be
specified.

Thin Walls Internal thin walls are thin solid surfaces within the solution
domain that are aligned with the grid. Solution is carried out
on both sides. The walls are impervious to flow but it is
possible to specify heat transfer across them. Surface friction
(different on each side if required) is evaluated.

Triangular Prisms Triangular prisms are solid objects with a triangular cross
section, and with all faces except the sloping face aligned
with x, y, and z. All surfaces are zero friction and only the
sloping surface has heat transfer. This is specified in terms of
a temperature and heat transfer coefficient, or, as a fixed heat
flux.
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2) Numerically Solving the Physical Model

Integration is one of the cornerstones of calculus, the other being differentiation. In order to find
the solution domain (the area under a solution curve) numerically, the curve would be chopped
up into little pieces, and then the area under each little curve would be approximated. The sum of
all of the approximate little areas would be close to the actual area under the curve. The
difference between the actual and approximate areas is the numerical error. The object is to make
this error so small it is not noticeable. In CFD, rather than integrating a relatively simple function
like the equation for a curve, the governing equations of motion for a fluid continuum are
integrated.

Let us consider a typical animal facility. The objective is to predict airflow, temperature, and
concentration of any airborne contaminant at any point in the room space.

Figure 5.01 shows a set of design parameters such as

• the geometry and layout of the animal room
• the sources of heat and contaminants,
• as well as the position of exhaust and ventilation systems.

In order to do this, the three-dimensional space of the animal room is subdivided into a large
number of control volume cells (figure 5.02). The size of the cells influences the detail and
accuracy of the final results. In all the whole animal room cases, the number of grid cells ran into
the hundreds of thousands, and, in some instances, totaled over one million grid cells.

The equations in each cell represent the mathematical definition of the equipment and
phenomena contained within it. For example, a cell could encompass a volume that envelops the
following:

• a representation of a group of mice
• or some heat source
• or just some air.

The CFD software will then attempt to solve the Navier-Stokes equation for a predetermined set
of variables for each cell. In a typical three-dimensional calculation these variables would
represent the following:

• velocities in three directions,
• temperature,
• pressure,
• concentration,
• and the turbulence quantities.
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   Figure 5.01 Geometric Model

  Figure 5.02 Control Volume Cells
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Note that the solution for each variable will depend on the solution for each and every variable in
the neighboring cells and vice versa. The laws of physics based upon the conservation of mass,
conservation of momentum, and conservation of energy must be preserved at all times. In this
approach, turbulence is modeled using the established and robust two parameter method known
as the k-epsilon model where k represents the kinetic energy and epsilon represents the rate of
dissipation.

The mathematical solution is highly iterative, with each iteration resulting in a set of errors. At
the end of each iteration the errors for each variable are summed, normalized with an acceptable
error, and plotted against iteration number (figure 5.03). A solution is reached when the sums of
the errors for each, and all the variables, reaches a pre-determined and acceptable level.

Each cell within the solution domain has eight equations associated with it: pressure, three
velocities, temperature, two turbulence quantities, and concentration. An animal room model in
this research typically has 100,000 to 600,000 cells, resulting in 4.8 to 6.4 million equations that
have to be solved iteratively until the convergence criteria are satisfied. This extremely
computer-intensive operation requires the use of powerful state-of-the-art workstations.

Figure 5.03 Iterative Convergence History of a Simulation
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5.2 Description of Mathematical Model

5.2.1 Governing Equations

The generic form of the governing equations, shown by equation 5.1, can be expanded to form
the three fundamental conservation laws that comprise the Navier-Stokes equations. These are

the conservation of mass:

∂ρ
∂

∂ρ
∂t

U

x
i

i

+ = 0 (5.2)

the conservation of momentum:

( ) ( )∂ρ
∂

∂
∂

ρ ∂
∂

∂
∂

µ ∂
∂

ρ ρU

t x
U U

P

x x

U

x
gi

j
i j

i j

i

j
i+ = − +









 + − 0    (5.3)

and the conservation of thermal energy:

( )∂ρ
∂

∂
∂

ρ
∂

∂
λ

∂
∂

∂
∂

H

t x
U H

x

T

x

P

ti
i

i i

+ =








 + (5.4)

These equations describe the behavior of fluids under both laminar and turbulent flow conditions.
When calculating the flow in the built environment, one of the most important physical effects is
that of turbulence.

5.2.2 Turbulence Modeling

For this project, an established and reliable approach to turbulence modeling is required to
achieve the large number of calculations necessary for analysis of the many configurations. This
section provides some background on the different approaches to modeling turbulence.

To model a turbulent flow, the temporal terms of equations 5.2, 5.3, and 5.4 would have to have
a time step (dt) small enough to capture all turbulent fluctuations on even the smallest time
scales. The same applies to all physical dimensions of the control volume cells (dxi) terms. They
would have to be as small as that known as the Kolmogarov scale, which decreases nonlinearly
with an increase in Reynolds number.
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To overcome these limitations, variables are split into a mean and fluctuating component, i.e.:

U U u

H H h

= + ′
= + ′

(5.5)

These are then substituted back into the instantaneous momentum equation, producing the
following:

( ) ( )∂
∂

ρ
∂
∂

∂
∂

µ
∂
∂

ρ ρ ρ
x

U U
P

x x

U

x
u u g

j
i j

i j

i

j
i j i= − + − ′ ′









 + − 0 (5.6)

This is known as the time averaged momentum equation. A similar equation exists for the
enthalpy equation:

( )∂
∂

ρ
∂

∂
λ

∂
∂

ρ
x

U H
x

T

x
u h

i
i

i i
i= − ′ ′







 (5.7)

The extra terms produced by this substitution are:

• jiuu ′′= ρstress Reynolds

• Reynolds flux = ′ ′ρu hi

A turbulent flow is characterized by the dominance of diffusion due to the Reynolds stresses and
the fluxes over the diffusion due to laminar viscosity or laminar diffusivity of the fluid. The
spread of contaminants in the animal room, in particular the determination of CO2 and NH3

levels in both the cages and within the room itself, is controlled strongly by the diffusion of the
contaminant into the surrounding air volume. The role of turbulence modeling, to calculate the
Reynolds stresses and fluxes, is therefore of vital importance in the accurate prediction of
concentration spread in the cages and room.

The introduction of the Reynolds stresses and fluxes after decomposition of the turbulent
fluctuating variables means that the equation set is now not closed. Some form of closure is
required to model these fluxes and stresses. There have been a wide range of methods used to do
this, varying from the most simple zero-equation models to the much more complex Reynolds
stress transport equations. Figure 5.04 shows how these turbulence models relate to each other.

At the center of the zero-, one-, and two-equation models lies the analogy that where a laminar
stress exists, so can an equivalent turbulent stress (i.e., Reynolds stress). A laminar shear stress is
defined as:
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τ µ
∂
∂

=
U

x
i

j

(5.8)

So, if a fluid can have a laminar viscosity, µ, then a turbulent flow should have a turbulent or
eddy viscosity, µT. By using the eddy viscosity hypothesis that Boussinesq proposed, we can
relate the Reynolds stress to the mean strain by:

− ′ ′ = +








−ρ µ

∂
∂

∂
∂

ρ ∂u u
U

x

U

x
ki j T

i

j

j

i
ij

2
3 (5.9)

A zero-equation turbulence model simply sets a constant value of the eddy viscosity, or deduces
it as an algebraic function of flow parameters. A one-equation model uses a differential equation
to predict one part of the eddy viscosity while a two-equation model uses two differential
equations.

The main limitation imposed at this stage by equation 5.9 is that the eddy viscosity is the same in
all directions at any point. Where this may be true of laminar viscosity, which is a property of the
fluid, it may not be true of turbulent viscosity, which is effectively a property of the flow.
Therefore, this eddy viscosity can have differing values in relation to differing Reynolds stresses.
This occurs when the turbulence is said to be anisotropic. Conditions that may cause anisotropy,
and thus could invalidate the isotropic assumption of equation 5.9, include extreme streamline
curvature, swirl, adverse pressure gradients, and buoyancy.

The two-equation approach including the standard k-ε model and the RNG k-ε model variant is
presented first. Reynolds stress modeling is then discussed and, finally, the modeling of the
Reynolds fluxes is briefly outlined.
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Figure 5.04 Tree of Turbulence Modeling

the Reynolds stresses are each derived from
their own transport equations
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from dimensional analysis it is shown that:
µT = ρ × const. × velocity scale × length scale

both the velocity scale, k, as well as a
length scale, ε, are
derived from their own transport equations

µT = constant or an algebraic function of a flow
parameter such as Reynolds number

µ ρ µT kl= C
the velocity scale, k, is derived from its own transport equation and
the length scale, l, is assumed constant

ZERO EQUATION

ONE EQUATION MODELS

TWO EQUATION MODELS

REYNOLDS STRESS MODELS

EDDY VISCOSITY ASSUMPTION
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5.2.2.1 k-ε turbulence model

This turbulence model calculates two variables; the kinetic energy of turbulence (k) and the
dissipation rate of k (denoted ε).

The eddy viscosity is defined from dimensional analysis as:

µ ρ
εµT

k= C
2

(5.10)

The transport equations for k and ε are:
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where P is the shear production, defined as:

P = +
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G is the production of turbulence kinetic energy due to buoyancy, and is given by:

G
T

= µ
σ

β ∂
∂

eff
i

i

g
T

x
(5.14)

Cµ 0.09

C1 1.44

C2 1.92

C3 1.0

σk 1.0
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σε 1.217

This model has been tried and tested for a whole range of engineering applications. It is simple,
but more importantly, it is stable. Only two extra differential equations are introduced. The
convergence process is less prone to divergence than other, higher order turbulence models. This
approach has been adopted for the present research.

5.2.2.2 Re-normalized group theory (RNG) kε turbulence model

Essentially, this model has much the same form as the standard model. It is part empirical and
part analytical. The only changes are a modified term relating to the production of energy
dissipation in the ε equation and a different set of model constants. This RNG model is typical of
those offered by some commercial, general purpose CFD codes. The new equations for k and ε
become:
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The new function C1RNG is given by the equations:
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(5.17)

and:

η
ε µ

= k P
(5.18)

In this case η0 and β are additional model constants. The latter should not be confused with the
coefficient of thermal expansion. The main modification is to the ε equation, where the rate of
strain of the flow has been incorporated into the model constants. Under conditions of extreme
strain, the eddy viscosity is reduced. It is this feature of the RNG model that is said to
accommodate strong anisotropy in regions of large shear, i.e., the treatment of massive
separation and anisotropic large-scale eddies. Most validation of this model has been only under
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extremely high strain conditions, such as internal flow in a 180° bend and flow within a
contracting-expanding duct. Accurate prediction of separation regions seems to be the grail of the
validation work. A more realistic range of softer type flows (i.e., less extreme strain) has not been
studied with the RNG model. The infancy of this approach prevents it from being incorporated at
this stage. When the model becomes as tried and trusted as the present standard k-ε model, it will
be given greater attention.

5.2.2.3 Reynolds stress models (second order closure models)

Instead of employing the eddy viscosity assumption, which assumes an equal eddy viscosity in all
three spatial directions, a Reynolds stress model has an equation for each of the six Reynolds
stresses themselves. This allows the modeling of the transport of each of these individual
stresses. This is the most complex of all models and suffers accordingly. Instead of two extra
equations we now have an extra seven. An equation for ε is still required because it pops up in
the stress transport equations. Convergence stability now becomes a serious problem. Even if
convergence is achieved, it normally takes considerably longer than with a two-equation model.
Prescription of boundary conditions is also tricky. Instead of setting just k and ε, we now have to
set values at supply boundaries of all stresses, not the easiest of parameters to obtain from
experimental measurement. The question has to be asked as to whether the added theoretical
capabilities of an RSM are worth the increased solution time and decrease in stability.

5.2.2.4 Modeling of Reynolds fluxes:

The velocity-enthalpy correlations known as the Reynolds fluxes use much the same
methodology as the Reynolds stresses. An eddy diffusivity is therefore defined as:
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where this eddy diffusivity is related to the eddy viscosity by:

ΓT
T

=
µ
σ

T (5.20)

where σT is the turbulent Prandtl number having a fixed value of 0.9. The next step up, as with a
second order closure model, is to calculate each of the three fluxes from their own transport
equations.
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5.2.3. Near Wall Treatment

Fluid velocity at a wall surface is zero, which is known as the no-slip condition. The type of flow
between the wall and the bulk flow is known as a shear layer, in this case, a wall boundary layer.
The boundary layer is a very complex region of high velocity gradient and diffusion dominated
development. To model it precisely would necessitate an extremely fine grid. An empirical
relationship is therefore used to describe the shape of the boundary layer so that only one grid
cell near the wall is required. This empirical relationship describes the shape of the boundary
layer in nondimensional terms. Two nondimensional terms are formulated. These are the friction
velocity:

u w
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and a nondimensionalized distance from the wall (which can be viewed as a local Reynolds
number):

y
u y+ = τ ρ
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(5.22)

These formulae are based upon the established ‘universal’ relationships:
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For (laminar): y
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(5.24)

All that is required to deduce the wall shear stress from the near wall velocity is therefore the
distance from the near wall cell center to the wall itself.

5.2.4 Treatment of Contaminant

A contaminant that is both advected and diffused by the fluid in which it is suspended can be
modeled via the introduction of an additional transport equation. This concentration variable, C,
has the units of kg of species/kg of fluid, and obeys the time averaged equation of the
conservation of concentration flux such that:
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The velocity/concentration correlation, like the equivalent velocity/enthalpy correlation of
equation 5.17, also follows a gradient hypothesis. In this case turbulent concentration diffusivity
is calculated by:

DT
T

TSc
= µ

(5.26)

Both the laminar and turbulent Schmidt numbers have a value of 1.0.

In this project, levels of the two considered animal emission gases, namely CO2 and NH3, were
determined by the analysis of the distribution of such a concentration throughout the cages and
room volume.

In the cases where the whole animal room was considered, the levels of CO2 and NH3 generated
by the animals were small enough such that the concentration could be represented as a passive
concentration. In particular, the density change produced by the presence of the gases could be
considered insignificantly small. However, in the cage wind tunnel simulations, the level of CO2
injected into the cages was such that the gas affected the density of the gas/air mixture. The
density of the gas/air mixture in these cases was calculated as follows:

The density formula is based on the Ideal Gas Law:

( )
( )eraturedatum_tempTR

suredatum_presT__

+×
+×= weightmoleculareffective

Density (5.27)

where R (universal gas constant) = 8314.4
datum_pressure = 1.0133E5 Pa
datum_temperature = 273.13 K

When the molecular weight of the concentration is different to that of the air, the effective
molecular weight is calculated as:
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where f is the concentration value

This reduces to the normal Ideal Gas Law when the molecular weight of the concentration is the
same as that of the air.

The harmonic average comes about by considering the volume that 1Kg of the mixture occupies
namely:
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5.2.5 Integration of the Governing Equations

The governing PDE’s have to be integrated, or discretized, over the solution grid so that the finite
values of the flow variables may be predicted at each cell. The discretization process converts the
governing PDE’s into algebraic equations. The following figure shows the cell notation that is to
be used:

W EP

N

S

uw ue

Storage location of scalar variables

Storage location of velocity components

Figure 5.05 Cell notation

In this figure we see that all scalar variables are stored at the center of each cell, or rather the
scalar variable has the same value throughout that entire cell. The vector variables are stored on
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the center of each face of the cell so that fluxes flowing through the cell can be calculated
directly.

Once the solution domain has been gridded, each governing equation must be integrated over
each cell. Only when the laws of conservation, as well as the turbulent transport equations, are
satisfied at each cell (within a tolerable degree) is the solution complete.

For simplicity of coding, all the governing equations are organized into a similar form. This
generic form can be written as:
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The first term represents the convection of any variable, φ, by the mean fluid velocity, Ui ; the
second term represents diffusion where Γ is the diffusion coefficient; and the third term is a
source or sink term where φ is either created or destroyed. When integrating over a control
volume we obtain:
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The calculation of these integrals is the center of the discretization process. Figure 5.05 shows a
single orthogonal cell and some of its neighbors. With a nonstaggered grid, all variables are
stored at the center of the cell at point P. Neighboring points include points E, W, WW, and so
on. In the schemes that follow, a lower case subscript (n, e, s, w) refers to values at the
appropriate face whereas an upper case subscript (N, E, S, W) refers to values at the appropriate
cell centers.

5.2.5.1 Treatment of the diffusion terms

The diffusion term is the simplest to integrate. By looking at the diffusive flux at the west face of
the cell we can write:
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Where hw is the distance between cell centers. The above equation can be rewritten as:
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Such that DW is the west-face diffusion coefficient. There is a diffusion coefficient for each face
of the cell.

5.2.5.2 Treatment of the convective terms

The integration of the convective (sometimes referred to as advective) term is achieved by
employing the upwind differencing scheme. Here, the value of the flow variable at a cell
interface is equal to the flow variable on the upwind side of the face. Consider convection
through the west face of the cell (where the fluid enters from the west neighboring cell):

∫ ≡= WWWwwi FAUdAU φφρρφ n. (5.34)

Such that FW is the west face convection coefficient. Again, there are convection coefficients for
each face of the cell.

By combining the effects of both convection and diffusion the finite volume equation is
formulated:

a a SP P nn nn
nn

φ φ= +∑ (5.35)

The coefficients (aP etc.) that express the contribution of convection and diffusion across the cell
boundaries are called matrix coefficients. Each matrix coefficient is simply the sum of both
diffusion and convection coefficients. The value of the convection coefficient is determined by
the direction from which fluid enters the cell.

5.2.6 Solution of the Finite Volume Equations

Having covered the derivation of all linearized equations from the governing partial differential
equations, the process by which they are solved will now be explained. An iterative process is
used, starting from an initial estimate of the values of all variables at each cell through to the
converged solution where the final values obey their respective conservation equations to within
an acceptable degree of accuracy.

The solution process consists of two loops. An initial guess, or initial condition, is taken for the
values of all variables at each cell. The two loops are then iterated in a nested manner. The inner
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loop solves the linearized equations for each variable in turn at each cell, assuming all other
fields are fixed. The outer loop involves updating all variable fields with the values calculated in
the inner loop. As this process progresses, the flow field approaches its final or converged state.
The iterative process stops when the errors in all governing equations reach acceptably small
values.

5.2.6.1 The inner iteration

The inner iteration consists of taking each variable in turn, while assuming all the others to be
fixed, passing the relevant equations for each cell to a Gauss Siedel equation solver. All updated
variable values are not passed on to the other linearized equations until completion of the inner
loop, and it is within the outer loop that this takes place.

At some point the iterative process must be terminated so that the inner iteration can proceed
onto the next variable. Criterion must be met before the inner iterations for a given variable
stops. Either the total number of inner iterations is reached or the reduction in the residual error
(the amount by which the current governing conservation equation is not satisfied) for the given
variable reaches a tenth of the level when the inner iteration began.

5.2.6.2 The outer iteration

Once the inner loop has been completed, i.e., each variable taken in turn and iteratively solved
until the stopping criterion has been met, the outer iteration is performed. The main aim of the
outer loop is to update all variables in all equations by the values calculated in the inner loop. It
is within this outer loop that the velocity–pressure–coupling algorithm, SIMPLE, is
implemented. This predicts the correct value for cell pressure based on the current cell
momentum (Patankar, 1980).

The outer loop is stopped when the problem is said to have converged. This occurs when the
residual errors for all equations are acceptably small (i.e., 0.5 percent of the inlet flux for each
variable).
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5.3 Nomenclature

′φ Fluctuating component of variable φ
φ Mean component of variable φ
∂ ij Kronecker delta (1 if i = j else = 0)

β Coefficient of thermal expansion
ρ Density
ε Rate of dissipation of turbulence energy
τ Shear stress
λ Thermal diffusivity
µ Viscosity
σT Turbulent Prandtl number
µeff Effective viscosity (µ + µT)
ΓT Eddy diffusivity
µT Eddy viscosity
C1-3,µ σk σε Turbulence model constant(s)
g Acceleration due to gravity
H Enthalpy
k Turbulence energy
P Pressure
T Temperature
Ui Velocity tensor
xi Distance tensor


